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Lattice Green’s function approach to the solution of the spectrum of an array
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In this paper we derive general relations for the band structure of an array of quantum dots and compute its
transport properties when connected to two perfect leads. The exact lattice Green’s functions for the perfect
array and with an attached adatom are derived. The expressions for the linear conductance for the perfect array
as well as for the array with a defect are presented. The calculations are illustrated for a dot made of three
atoms. The results derived here are also the starting point to include the effect of electron-electron and
electron-phonon interactions on the transport properties of quantum dot arrays. Different derivations of the

exact lattice Green’s functions are discussed.
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I. INTRODUCTION

Quantum dots, quantum wires, and molecular structures
are among the most studied low-dimensional condensed-
matter systems due to their importance to nanoelectronics!
and recently to biology.” In the field of molecular electronics,
molecules are used to control the current flow when they are
assembled in between metal contacts.> Among the several
physical properties exhibited by low-dimensional electron
systems, interesting ones can be found in the transport prop-
erties of these systems, such as conductance quantization and
conductance oscillations,* and the latter effect depends on
the number of atoms in the wire. Some of these effects have
been found in the related field of carbon nanotubes, where
experiments have shown that the conductance of a single
wall carbon nanotube is quantized® and shows Fabry-Pérot
interference patterns, a signature of coherent transport in the
carbon wire.

The above systems all fall under the study of low-
dimensional physics and are best described starting from the
tight-binding approximation. When we address the physical
properties of these low-dimensional systems there are two
different questions to address. One is concerned with the
electronic spectrum® and the other with the transport
properties.” The first of these properties is of importance for
the optical response of the system and the second for its use
in nanoscopic devices.

The need of an efficient method of computing both the
spectrum and the conductance of these systems is therefore
obvious. Both these problems can be traced back to the cal-
culation of the lattice Green’s function of the system. In the
case of the spectrum, the Green’s function should be com-
puted for the isolated system, whereas when considering the
transport properties, the Green’s function must be computed
taking into account the effect of the coupling between the
system and the metallic leads. The lattice Green’s function
method was used to describe the appearance of surface
modes (Tamm states) in a finite one-dimensional (1D) chain
and its interaction with a nonlinear impurity.® The generali-
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zation to a semi-infinite square lattice was also discussed.’
Several different methods of computing transport properties
of one-dimensional quantum wires, using lattice Green’s
functions, are available in the literature. A tutorial overview
on some of the used methods was recently written by
Ryndyk et al'® Using the Keldysh method, the coherent
transport through a one-dimensional lattice was studied by
Zeng et al.'! Li et al.'? studied the transport through a quan-
tum dot ring with four sites. The inclusion of time-dependent
potentials on the transport properties of one-dimensional
chains was done by Arrachea.'> The inclusion of electron-
electron interactions in the transport properties of a small
system was discussed by Oguri'# and of a quantum wire was
done by Karrasch et al.,'® using a functional renormalization-
group method. The extension to a quasi-one-dimensional
Kagome wire, where the feature of a multiband system is
present, was considered by Ishii and Nakayama.'¢ The inter-
esting situation where the metallic wire is connected to a
Heisenberg chain was studied by Reininghaus et al.!” The
above results are just a very small subset of the existing
representative literature on quantum transport where the con-
cept of lattice Green’s function plays a central role.

Historically, the first approach to electronic transport in a
one-dimensional finite system was done in a series of elegant
papers published by Caroli et al.'32° In these works the au-
thors addressed the question of how defects affect the charge
transport of the quantum wire. Indeed, the question of how
localized defects change the otherwise perfect transport
properties of the system was addressed by several authors in
the framework of tight-binding systems.?!~>3

Guinea and Vergés?! used a Green’s function method to
study the local density of states and the localization length of
a one-dimensional chain coupled to small pieces of a poly-
mer. They showed that at the band center there is a complete
suppression of the transmission coefficient due to a local
antiresonance. Sautet and Joachim?? studied the effect of a
single impurity on the transport properties of a one-
dimensional chain. The impurity was assumed to change
both the on-site energy and the hopping to the next-neighbor
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atoms. Mizes and Conwell? considered the effect of a single
impurity in two coupled chains showing that a change on the
on-site energy has a more pronounced effect in reducing the
transmission in the one-dimensional chain than it has in this
system. Finally, Peres and Sols?* studied analytically the ef-
fect of a localized defect in the transport properties of poly-
acene (a multiband system), putting in evidence a parity ef-
fect, which was also used by Akhmerov et al.® to formulate
a theory of the valley-valve effect in graphene
nanoribbons.?*-28 Also the study of vacancies in transport of
quasi-two-dimensional systems is an important area of
research.?’ The study of a linear array of quantum dots, rep-
resented by a single site with an s orbital, was carried out by
Teng et al.*°

The book of Ferry and Goodnick®' has a very good intro-
ductory section to lattice Green’s functions. Also the recur-
sive Green’s function method is presented there. The method
we present in this paper has strong similarities to the recur-
sive Green’s function method.>' The important difference to
stress here is that the recursive Green’s function method is
implemented as a numerical method, whereas our approach
does solve the same type of problems in an analytical way.
The link between Green’s functions and transport properties
of nanostructures and mesoscopic systems is well covered in
the book of Datta.*

In this work we give a detailed account of a method,
based on the solution of the Dyson equation, to compute the
lattice Green’s function of an array of quantum dots, where
the dot is represented by an arbitrary number of sites with
arbitrary values of the site energies and of the hopping pa-
rameters. The method is developed within the approximation
that there is only one hopping channel between the dots in
the array. This constrain is used to keep the level of the
formalism at its minimum. The formalism is easily general-
ized to include the effect of defects (both on-site and ada-
toms defects) and to describe the transport properties of both
the clean and the perturbed system. The method exploits the
fact that the Dyson equation for the lattice Green’s function
can be solved exactly for bilinear problems as long as the
hoppings are not of arbitrary long range. Also the developed
formalism can be used to describe surface states and nonlin-
ear impurity effects® in a finite array of quantum dots, but we
will not pursue these two aspects in this paper. Although
developed within a quasi-one-dimensional perspective, we
will show in a forthcoming publication how the method can
be generalized to two-dimensional ribbons.

II. DETERMINATION OF THE LATTICE GREEN’S
FUNCTION

In this section we develop a general method for determin-
ing the Green’s function of an array of quantum dots. From it
both the electronic spectrum and the rule for momentum
quantization are obtained. As a warm up we first revisit the
solution of the finite chain problem.

The traditional approach®*-33 to determine the Green’s
function in real space requires the previous solution of the
Schrodinger equation, with the corresponding determination
of its eigenvalues and eigenvectors. After this is done, the
Green’s function is computed using
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Glrx' = S, ADAT) (1)

n Z_)\n

where #,(r) and \, are, respectively, the eigenstates and ei-
genvalues of the eigenproblem H,(r)=\,#,(r), where H
stands for the Hamiltonian of the problem and the summa-
tion over n means a discrete sum (for discrete eigenvalues)
or an integration (for continuous eigenvalues), or both, over
the quantum numbers of the problem.

The evaluation of the sum in Eq. (1) may be a very hard
task, depending on the mathematical complexity of both the
wave functions and the eigenvalues. Even for relatively
simple cases the evaluation of the summation is far from
obvious (see appendixes of Ref. 36).

An alternative approach, used for lattice systems, starts
from the definition of the resolvent operator,

1
z—-H’

G= )
and computes the matrix elements of the resolvent by evalu-
ating directly a number of determinants associated with the
matrix (z—H).3%37 This method has the obvious drawback of
being limited by the possibility of computing analytically the
necessary determinants.®®3° We present in what follows a
method that overcomes the technical difficulties mentioned
above.

A. Single chain case

In order to understand how the method works, we revisit
the problem of determining the Green’s function of a finite
one-dimensional chain of atoms with single orbital per atom.
This simple example will help us to fix the notation and state
the general arguments about the solution of this type of prob-
lems. Let us assume that the system has N atoms, with the
motion of the electrons described by the tight-binding
Hamiltonian,

H=Hy+V, (3)
with
N
Hy= 6021 |i)] (4)
and
N-1
V:-r}} (i + 1|+ i + 1)]). (5)

Clearly, Eq. (4) represents the on-site energy of the electrons
in the atoms and Eq. (5) represents the hopping of the elec-
trons between neighboring atoms. This may seem as an im-
portant restriction, but it can in fact be relaxed and the ap-
proach extended to more general hopping processes.*
Alternatively the Green’s function of a more complex Hamil-
tonian may be generated using the extension theory for lat-
tice Green’s functions.*!

Let us now introduce two different resolvent operators:
the free resolvent,
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Go=—
Z—H()’

(6)

and the full resolvent G given by Eq. (2) with H given by Eq.

(3). The strategy is to determine G by solving exactly Dys-
on’s equation,’® considering the hopping term V as perturba-
tion. In terms of the resolvents and of V, the Dyson equation
takes the form

G=G"+GVG. (7)

Forming matrix elements with the basis vectors and using
1=, i)

, one obtains
LA, . Ala Al
SGICL) = 8= i = 1[Gl + G+ 1E). @)

with G°=(z—€))~". Apart from the term & j» this is the equa-
tion for the wave function of a particle of coordinate i with
the tight-binding Hamiltonian (3) and eigenvalue G°(z). It is
obvious that the difference of two solutions of this equation
will be a solution of the equation without the J;; term. So

G;;j=(i |é| j) can be determined by adding a general solution
of the homogeneous equation to one particular solution of
the full equation. The latter can then be determined by the
boundary conditions.

The solutions of the homogeneous equation are superpo-
sitions of plane waves, (n|G|m)=A,,¢'", where A,, is an ar-
bitrary function of m and 6 is defined by

1
el 2t cos 0, 9)

the usual dispersion relation for a 1D tight-binding problem
with nearest-neighbor hopping. To find one particular solu-
tion of the full equation, we use the fact that it has to satisfy
the homogeneous equation for i <j and i > j and therefore be
a linear combination of plane waves of wave vectors
+ @—the solutions of Eq. (9)—or, equivalently, of sin(i6)
and cos(if),

G; =A’ cos(i6) + B/ sin(i) for i =}, (10a)

G;; =C’ cos(if) + D/ sin(if) for i>j.  (10b)

In the linear system of equations obtained by fixing j in Eq.

(3),

G0 1 G° 0 - 0l Gl 0

0 G° 1 G* - 0 : .
. . AL = BE

Glély | 16

0 tGO 1 A 0
I LGy [ ]

(1

all but two equations are automatically satisfied by the fact
that G; and G; solve the homogeneous equation, leaving

only two conditions mixing G;; with G;;,
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| - _

EGJJ =1 _t(Gj+1j+ Gj—lj)a (12a)
| . - _

EGJ'HJ =" I(G_;‘+2j +Gj). (12b)

These are easily shown to be equivalent (using the fact that
the Green’s function is also a solution of the homogeneous
equations) to

> <
G =Gy (13a)
> < 1
Gy~ Giay=7 (13b)

Equation (13a) corresponds to the continuity of the Green’s
function, whereas Eq. (13b) corresponds to the discontinuity
of the derivative of the Green’s function in the theory of
second-order differential equations.>*

Inserting Eq. (10) into Eq. (13), one can obtain a rather
simple solution (valid in both domains i< and i>j) as

G;j= :
2t sin 6

sin(6i - j|). (14)

The general solution is obtained by adding an arbitrary solu-
tion of the homogeneous equation,

G;;=A' cos(6i) + B/ sin(6i) + sin(6)i - j|).

2t sin 0
(15)
The free coefficients, A’ and B/, are determined by boundary

conditions. For a finite chain we must enforce,

(0|Gljy= (N +1|Glj)=0, (16a)

(i|G|0y = (i|GIN + 1) =0. (16b)

It is straightforward to show that these lead to

1 cos(NO+ 0)

2¢sin(NO+ O)sin 6
1 [ sin(i6+j6) sinjio-j6

- 2_t sin@

Gi(z) = [cos(if@—jB) —cos(if+ jO)]

17
sin @ (17)

Noticing that the Chebyshev polynomials obey the finite dif-
ference equation,

fn—l(x) +fn+l(x) = 2an()6), (18)

and have the representation*?

T,(cos 0) = cos(nb), (19a)
in(nf+ 6
U,(cos 6) = M, (19b)
sin 6

we see that solution (17) is the same solution obtained for a
finite one-dimensional harmonic lattice,*® as it should be. It
is worth noticing that the rule for momentum quantization
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FIG. 1. (Color online) An array of N quantum dots coupled
together by a hopping integral 7. The dot is represented by the
hexagon. The points / and r are those that are coupled between dots
due to ¢, and the choice of the letters stands for most left and most
right points in the dot, respectively.

(that is 6) is obtained from the poles of Green’s function
(17), leading to

sin(N+1)0=0= 6, = (20)

N+1’
with €=0,1,2,... ,N—1.

Rewriting G%=(z—¢€))"! as G'=(E-¢,+i0%)~!, where E
stands for the energy of the electron, the energy dependence
of the Green’s function is obtained:*? this allows the calcu-
lation of the local density of states from

1
pi(E) == —Im G;(E +i07). (21)
T

It is clear that p;(E) is site dependent for a finite chain. It is
an elementary calculation to find an explicit expression for
pii(E) by writing both cos(2i6) and sin(2i6) in terms of sin 6
and cos 6 and using Eq. (9). We conclude by stressing that
the matrix elements of the resolvent were obtained without
the need of evaluating the sum over the eigenstates, as in Eq.
(1), which constitutes the major advantages of this method
over most of the existing ones.

As a final comment in this section, we remark that the
final solution for G;; is quite symmetrical in both coordinates
even though the method we followed treats the two coordi-
nates on a rather different footing. In Appendixes A and B
we give two other derivations of the Green’s function of a
finite chain which treats both coordinates equally from the
beginning.

B. General case

We now consider the case where N quantum dots, repre-
sented by hexagons in Fig. 1, are coupled together by an
hopping parameter 7. Although having just a single hopping
channel between the dots may seem rather restrictive, we
used it nevertheless to illustrate the method. Also, if we
choose to position the dot in such a way that it has oriented
edges such that a particular site of the dot is closer to the
next dot than any other point, as in the case of Fig. 1, the
used approximation is somewhat justified. The generalization
of this possibility to multihopping processes does not change
the general idea but adds some complexity to the final solu-
tion. In addition, we assume that the dot is also described by
a lattice model. Although this an apparent restriction, it can
also be relaxed. We now address the question of determining
the Green’s function of the quantum dot array.

The Hamiltonian for the problem defined by Fig. 1 is
written as

PHYSICAL REVIEW B 79, 035107 (2009)

Hy=HP +V, (22)
where
N
HP =2, HY, (23)

i=1
with H” as the Hamiltonian of the i dot (which is not neces-
sary to specify at this point), and

N-1

V=—12 (
i=1

i+ 1,1

). (24)

+ i+ 1,0, r

As before we define (A}O=(2—HD)‘1 and note that |i, ) are
the basis states, with i=1,2,...,N and f labeling the sites in
the quantum dot; we will need two different 8’s only, with
B=r,l.

The matrix elements of the Dyson’s equation [Eq. (8)],
given Hamiltonian (22), read

(i,a|é G

j.B)
j.B)). (25)

with Ggﬁz(i ,a|GYi,B). It is easy to see, by direct replace-
ment, that the homogeneous Dyson’s equation (that is when

j.B) = 8,,Gog— H(Goli—1.r

A

+GY(i+1,1|G

i # j) is solved by an Ansarz of the form Gyz=A% ™’ when
0 is chosen such that
1 +21G). cos 0+ (G =GYG°, (26)

an expression that gives the band structure once the quan-
tized values of 6 have been determined. We see from Eq.
(25) that (i,o|G Glj,p) and
(i+1,1 G j,B). Therefore we will solve the Dyson’s equation
[Eq. (25)] for the particular case of a,B=I,r. To start with
we make the Ansatz (a linear combination of terms of the
form Ay ge™

j,B) is only coupled to (i—1,r

Go3 =A,zcos(if) + B gsin(if) for i<j, (27a)

G.3 =A_zcos(if) + B gsin(if) for i>j, (27b)

where Gf/;,ij =(i, a|é j,B), and the multiplicative coefficients
of the trigonometric functions depending on j. The finiteness
of the chain is imposed by the conditions

A

(0,rG G

j.B)=(N+11Gl|j.B)=0, (28)

and time-reversal symmetry implies that

7.8) = (. BlGli, ). (29)

The solution of the nonhomogeneous Dyson’s equations (that
is, when i=j) leads to a linear system of equations of the
form

(i,a|é

Mv=Db, (30)

with the transpose vectors given by v'=[A;,A; ,B;] and
b’=[G),G" ,0]. The matrix M is easily constructed from the

nonhomogeneous Dyson’s equations and is given in Appen-
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dix C. The solution of the linear system is best accomplished
by Cramer’s rule, leading to

0

G _
A =——sin(NO+ )P, (31a)
1GYG°
A= ;+rrsin(N0+ O)sin(j6), (31b)
L
0
B =-—-"p, 31
rr PL N-j ( C)

with P;=1G", sin OP; and P,=1G". sin(x6— ) +sin(x6).
Combining the homogeneous and nonhomogeneous equa-
tions we can derive the following results:

<,m-1m >m—-1m _ -1
Grl - Grl =t -,

(32a)

> m+1lm <m+lm _ —1
Gy, -Gy =1

; (32b)

which combined with time-reversal symmetry and one of the
nonhomogeneous equations leads to the linear system,

Vu=q, (33)
with u”=[A;,B;;,B,;] and V and q are given in Appendix C.
The solution of the linear system gives
Ar>l = (IPL)_lﬁLﬁm—17 (343.)
B =—(tP;) '[cos(L6) + tG?r cos(L6- 0)1P,,_,,
(34b)
B;; = (tP;) '[cos 0+ tG?r cos(260)1P;_,,. (34c¢)

As we saw before the poles of the Green’s function give
the rule of momentum quantization. In this case the poles
correspond to the zeros of P;, which leads to an equation for
the quantization of @ that reads

tG) sin(N@ - 6) +sin(N6) = 0. (35)

Contrary to the case of the single finite chain, Eq. (35) de-
pends on the energy, and therefore it has to be solved to-
gether with Eq. (26). The knowledge of A;;, A;, A, B,,, B},
and B is all that is necessary to determine all the Green’s
functions for this problem. The full form of the Green’s func-

tions is given in Appendix D.

C. Explicit results for a particular example

Let us now consider a specific example and work out the
energy spectrum and the momentum quantization. For the
Hamiltonian of the quantum dot we consider the case where
the dot is made of three sites very close together, with a
single local orbital®® associated to each site. The sites are
coupled together by a hopping matrix element #5. The sim-
pler case of representing the dot by a single site was consid-
ered by Teng et al.®® The Hamiltonian of the dot we are
considering reads

PHYSICAL REVIEW B 79, 035107 (2009)

3
HP =—1, > (li.a)(i,a+ 1| + |i,a + 1)(i, al)
a=1

i,a)i,al, (36)

3
+ 602
a=1

with the boundary condition (i,4|=(i,1|. What is now nec-
essary is to compute the Green’s function for this system. It
just happens that the Green’s function for this system is
given by the Green’s function of a finite chain (three sites)
with periodic boundary conditions. This can be obtained
from the procedure of Sec. Il A by replacing the boundary
conditions [Eq. (16a)] by

(1|Glj) = (N+1|GL)), (37)
which leads to

1 sin(N6)
Gij == ; ] Ti_j(COS 0)
214 cos(N6)sin 6 — sin 6

1
+ Z_IAU“_‘H_I(COS 0). (38)

For Hamiltonian (36) we have N=3 and the Green’s func-
tions computed from Eq. (38) are given by

1 1+2A

G =6°=¢" =, 39a

T T T =T+ A+ 202 (39a)

G=gegt =t 1 (39b)

Ir rl 12 ZZAI—)\—Z)\Z’

with A=(E—-¢y)/(2t,). We should note that G?l can be writ-

ten as
1 (2 1 1 1
G‘f1=—(— += ) (40)
205\3N=1/2 " 3n+1

which means that the eigenvalue A=-1/2 is bidegenerate
and that is the fundamental reason why the denominator of
the Green’s function is not a cubic polynomial.

We shall now consider the physical relevant case where
5> t. Within this approximation the solutions of Eq. (26) are
given by (N # 1)

t
Ny=-1-—cos 0, (41a)
A
1 tcosé I
A=+ — —\3+cos? 6, (41b)
2 6[A 6tA
1 tcosf t —s—
Ny=— +—3 +cos” 6. (41c¢)

2 6tA 6tA

The values of 6 are obtained from the solution of Eq. (35),
which requires the knowledge of G?Z, which in the approxi-
mation of Eq. (41) are given by

l‘_l

2 cos 0’

GY,(\y) = - (42a)
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FIG. 2. (Color online) Eigenvalues \;, when i=1 (left) and i
=2,3 (right) as a function of 6/ for large values of N. We have
used the ratio #/1,=0.1.

l_l

Gh(\,) = (42b)

5
—cos 6+ V3 +cos? @

t—l

GlH(N\3) = - (42¢)

cos 0+ 3 +cos® 6
Equation (35) is trivially solved for the case N=\;, giving
l
= Vil
with €=0, 1, =2,...,N. The other values of 6 for \, [top

sign in Eq. (44)] and \; [bottom sign in Eq. (44)] are ob-
tained as solutions of

0, (43)

cos(N@)sin 0= = sin(NO)V3 + cos” 6, (44)

which for large N reduces to

0€ N » (4‘5)
with €=0,*1,=*=2,...,N. This result can be appreciated
graphically by plotting both sides of Eq. (44) on the same
graph. Naturally, when N— %, @ becomes a continuous vari-
able in the interval 6 e (=, 7). In Fig. 2 we plot the eigen-
values \;, given by Eq. (41), using #/71,=0.1. The three sites
composing the dot originate three energy minibands (since
tA>1) in the dot array. It should be now clear that this
method allowed us to determine the energy spectrum, the
quantization rule for € in the case of a finite N, and the
Green’s functions for the array of quantum dots with essen-
tially the same effort that it would take us to solve the
Schrodinger equation for this problem.

III. TRANSPORT PROPERTIES

Next we want to work out the transport properties of the
finite system described in Sec. II C. We first derive the gen-
eral results and latter use them to study the system intro-
duced in Sec. I C. We will consider that our system is con-
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nected to two semi-infinite perfect leads. The leads to which
we will connect the system will be described in similar terms
to those used in the Newns model,***> and the connection
between the Green’s function and the transmission across the
system is described using a formalism similar to that intro-
duced by Mujica et al.,*0~*® which, it turns out, is similar to
the approach developed by Fisher and Lee.*” The general
relation between the transfer-matrix approach and the
Green’s function method is described in Ref. 50 in the con-
text of continuous models.

A. General formalism

Next we present the general formalism including some
particular important results associated with the concept of
surface Green’s function. We represent the Hamiltonian of
the perfect leads by one-dimensional semi-infinite tight-
binding models reading

iLYi-1,L

+ ), (46a)

0
Hp=- ,BL‘E (li-1,L)(,L

[=—00

o]

Hp=-Bg 2 (|i+ 1LLRYXi,R|+

i=N+1

i,R)i+1,R

), (46b)

where 3; p are the hopping parameters of the left (L) and
right (R) leads. Although we are representing the leads by a
one-dimensional model, this is of no consequences in the
characterization of the transport properties of the dots, being
only essential that B, g are such that metal bands in the leads
have very large bandwidth. Since the effective band width of
our dot structure is proportional to 7, the only condition is
that B; x>1t. The coupling between the leads and the dots is
made by the Hamiltonians,

VL: tL( O,L><l,l

1,1X0,L

+ ), (47a)

Ve =1tx(IN+ 1,RXN,r| + |N,r}N + 1,R|), (47b)

where #;  are the hopping parameters coupling the left (L)
and right (R) leads to the array of quantum dots. We are
neglecting the possibility of direct coupling between the left
and right leads, a simplification of no physical consequences,
corresponding to the fact that the array of dots has many of
these. The approach we are formulating with Eqs. (46) and
(47) differs somewhat from that in Refs. 44 and 46, but in
general terms the two approaches are perfectly equivalent.

The important aspect of the tunneling approach proposed
in Ref. 46 is the need to compute the off-diagonal Green’s
function G,"(z) for accessing the tunneling properties of the
system, including in the calculation the coupling to the semi-
infinite leads. This can be done in many different
ways,>+3046.51-53 Jeading in the end to results similar to those
obtained using  nonequilibrium  Green’s  function
methods. >

The full Hamiltonian of the problem is the sum of Egs.
(22), (46), and (47). Among the several ways available to
compute G,er (z), one possibility is to use again the Dyson’s
equation approach. This requires that we should know the
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exact Green’s function of the leads before the coupling to the
system is established; this is what we need to compute the
Green’s function of the problem defined by Eq. (46). The
calculation of the Green’s function of the leads can be done
using the same method we used in Sec. IT A but now with the
boundary conditions,

(1|Gy|m) = (N|Gglm) = 0. (48)

In this case, however, it is much easier to obtain the Green’s
function from the usual definition [Eq. (1)]. The wave func-
tion of the electrons is given by (let us consider the left lead

only)
B 0
6y = \/NL+1 > sin[(n—1)6]|n), (49)

n=—Np,

where N, is a normalization length that is taken to infinity in
the end of the calculation. Using definition (1) and wave
function (49) the matrix elements of the resolvent is given by
the integral in the complex plane (where C defines a contour
over the unit circle w=e¢'?),

1 W|n—m\ _ W|m+n—2|

G =— QO ————dw. 50
nm’L(Z) 21 c BLW2 +zw+ BL v ( )

The integral in Eq. (50) can be evaluated using the same
method that it has been used to solve for the Green’s function
of a chain with periodic boundary conditions,? leading to

1
Gt (E) = 5 (1 =) 72w 2 - (51)
’ 2lﬁL
with G™ , ((E) as the retarded Green’s function, w,=-x
+iV1-x% and x=E/(23;), such that |x|<1. The result [Eq.
(51)] is a generalization of the particular results given in Ref.
56 [the same is true for Eq. (52)]. Repeating the same argu-
ments for the right lead we obtain

G;et R(E) - (1 _ x2)—1/2(w|2n—m\ _ W|2m+n—2N|) (52)

m,

2iBg

and x=E/(2y). Central to our study are the surface Green’s
functions Gy, (E) and Gy, z(E) which we obtain from
Egs. (51) and (52).

In order to determine G}"(z) we introduce H'=H,+H;
+Hp, and the full Hamiltonian H=H"+V, + Vp; the free resol-
vent is G'=(z—H®)™'. As before, G!"(z) is determined by
solving the Dyson’s equation, which due to the short-range
nature of V; and Vj; has an analytical solution, reading

GINz) = (1|GONPHD™, (53)
with
D= (181G 11Ggy ) (1 = £Nr|GOINF)Gys 1 a1 2)
- it%e<1l|éo|N”><N”|éO|1Z>G00,LGN+1N+1,R- (54)

A formally equivalent result to Eq. (53) was first derived by
Caroli et al.'® in the context of tunneling across a one-
dimensional wire, which was the first application of the
Keldysh> formalism to tunneling problems.
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Let us now describe briefly the calculation of the linear
conductance for which Eq. (53) is needed. The central quan-
tity in this approach is the 7" matrix. Starting from the Dys-
on’s equation [Eq. (7)] and introducing an iterative solution,

we arrive at an equivalent form for G given by
G=G"+GTG, (55)
where T is the T matrix given by

T=V+VG'T=V+VGV, (56)

which describes the scattering of an electron from an initial
state |i)=|0L) in the left lead to a final state |f)=|N+1R) in
the right lead. Assuming that the chemical potential differ-
ence between the to leads (electron reservoirs) is ugp=p;
+¢e), with e as the modulus of the electron charge and V as
the electromotive potential between the two reservoirs, the
transmission rate is given by

|
o= %E JEgq = )1 = FES = ) )| Top narl* SEG = Ef),
a.p
(57)

where

Tornsir={OL|TIN+ 1R) = (OL|VGVIN + IR), ~ (58)
leading to a linear current,
) e 21re? af(x)
j===VTEES ()
h op

T ox |, Egu,

X |Top ws 1 S(EL - E). (59)

As usual, the conductance is given by g=j/V. At low tem-
perature, g reads

21re?
g(uy) = T|T0L,N+1R|2PL(ML)PR(,U«L) (60)
2me’ 2 2( ~IN 2
= =121 Glr () [P pr () prl(par) - (61)

fi

Naturally, the densities of states p;(u;) and pg(u;) should be
interpreted as the local density of states at sites 0 and N+1,
respectively. Equation (61) is formally equal to that derived
by Caroli et al.,'® using the Keldysh formalism, and should
be multiplied by a factor of 2 due to the spin of the electrons.

We should stress here that our approach to the tunneling
problem is similar to that developed by Mujica et al.*¢~*3 but
not exactly identical. These authors used the Newns
coupling** of the system to the leads, and their approach to
the solution of the Green’s function is based on the proper-
ties of tridiagonal determinants after using Lowdin’s parti-
tioning technique,’®—® whereas we explicitly solve the Dys-
on’s equation.

B. Application to a three-site quantum dot

As an application of the formalism that can be worked out
analytically in full detail, we study the transport across a
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metal N metal
lead lead
- 0 O -

FIG. 3. (Color online) A three-site quantum dot characterized by
ta. This is coupled to two metal leads by the couplings 7 and ¢;.

three-site quantum dot, as that shown in Fig. 3. Although this
is a very simple model, it is relevant enough for the our
illustrative purposes.

The Green’s functions of the quantum dot depicted in Fig.
3 have been computed in Eq. (39) for the case where the
coupling to the leads was neglected. Next, we need to com-
pute Eq. (53) for this problem. To this end we need the
surface Green’s functions G ; and G, g, which lead to

2_L iz (62)

Bi Bl

with x=E/(2;), with i=L,R. Interesting enough, the local
density of states computed from Eq. (62) does not diverge at
the band edge as it happens with the density of states of an
infinite one-dimensional tight-binding model.** The calcula-
tion of the matrix element of the 7 matrix leads to

Goo(E) = G5 x(E) =

IGiM ()P = 1653 88(15 + E — €))*D7, (63)
with D given by

D =448 - ED{(1p+ 13) Bl11 — (E — €)1 + (1 E(E — &)}
+{REBX1] + )~ 13 + (E - €)*] - 217 15(E* - 28)
X(E - €) + 4Bty + E — €)* (2t — E + €)}°. (64)

The algebraic form of D suggests that for an array of quan-
tum dots, giving a simple analytical form as Eq. (53) may not
be possible in general, and the last steps of a given particular
calculation may have to be done numerically.

C. Defects

In this section we describe the effect of defects on the
electronic spectrum of the array of dots as well as on its
transport properties. Let us again consider the generic situa-
tion described in Fig. 1 and consider as a simple and specific
example that at the site (x,l) (1 =x=N) there is an adatom.
We want to study what is the effect of this adatom on the
spectrum of the system and latter on its transport properties.
A particular study of the effect of an adatom on the conduc-
tance of a quantum wire was done by Kwapinski.* The pres-
ence of the adatom adds an extra term to Hamiltonian (22) of
the form

Hap=HJp+ Vap, (65)
with

H}p = €o| AD)AD

. (66a)

PHYSICAL REVIEW B 79, 035107 (2009)

FIG. 4. (Color online) A triangular dot with the atoms coupled
together by 75, which in turn is coupled to two metal leads by the
coupling constants zp and 7;. An add atom (represented by the
square) is connected to one of the atoms of the dot via the hopping

1o.

Vap = to(|AD)xI| + |[x[){AD

), (66b)

where |AD) is the electronic state in the adatom, ¢ is the
electronic hopping between the adatom and the (x,[) site of
the array, and € is the local electronic energy in the adatom.

It is again straightforward to apply the Dyson equation
formalism to compute the exact Green’s function in the pres-
ence of the impurity, leading to

(na|GlmP) = (na|G\mB) + (na|G|x)T{x1|G|mpB),
(67)

with the T matrix given by
T=15[z - €0 — t5(xl|GOxD)] ™, (68)

and the matrix elements (na|G°mf) are computed from the
resolvent G=(z—Hy)™', with Hy defined by Eq. (22). From
Eq. (67) we can compute Eq. (53) and from this the conduc-
tance given by Eq. (61).

In addition, we can compute the Green’s function of the
impurity, determining how the energy level is modified due
to the coupling to the bath of electrons propagating along the

array. This is given by (G,p=(AD|G|AD)),

Gap =z - €0 - AlGOxDT. (69)

From Eq. (69), the local density of states at the impurity can
be computed as pyp=—1/7IG4p,. The accepted 6 values are

now the solution of 1/G,p=0.

D. Defects: An application

Again we make a simple application of the formalism of
Sec. III C considering the system depicted in Fig. 4. The G°
Green’s functions entering in Eq. (53) are given in this ex-
ample by

Gh=(\—1/2)(1 +2N) 215\ + Ae)D, (70a)

G® =[(N = 1/2)(1 + 2\) 215\ + Ae€) — N3/t ]D7",
(700b)
G).=— (2t\\ + Ae)D!, (70c)

with D given by
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D=(N=1/2)[2t5(= 1 + N+ 2M%) (215N + A€) — 25 (1 +20)],
(71)

with Ae=¢,— €. It is interesting to note that the eigenvalue
A=1/2 of the nonperturbed triangular dot is not modified by
the adatom. The calculation of the conductance is now just a
matter of using Eq. (70) into Eq. (53).

IV. DISCUSSION

We have presented in full detail a method to compute the
lattice Green’s functions of an array of quantum dots for the
cases when the array is isolated as well as when it is coupled
to two metallic leads. The effect of the leads is to produce a
self-energy which has both a real (Re X) and an imaginary
(Im X) part. In the case of a single quantum dot, Re X will
renormalize the energy levels in the dot, whereas Im X
makes the energy levels nonstationary. Both terms contribute
to the charge transport through the dot.

The formalism is general and flexible enough to allow for
the study of how localized defects affect both the energy
spectrum and the transport properties. We can consider both
the case when the defect acts as local potential, i.e., diagonal
disorder, and when the defect changes locally the values of
the hopping integrals, i.e., off-diagonal disorder. Also more
than one defect can be attached to the quantum dot array at
different positions in the lattice. In the case of a random
distribution of impurities an approximate treatment such as
the coherent potential approximation (CPA) (Ref. 33) can be
used to compute the full lattice Green’s function
self-consistently.2¢

The generalization of the present approach to two dimen-
sions should present no difficulties, allowing for the possi-
bility to proceed analytically in the calculation of the energy
spectrum and transport properties of finite-size two-
dimensional ribbons. This possibility will be explored in a
forthcoming publication. The more restrictive aspect of the
method could be related to the calculation of the allowed
values of 6 since these are to be computed at the same time
the values of the energy eigenvalues are determined. For an
array of N dots, each dot having N, sites, the determination
of the spectrum following a brute force approach would re-
quire the diagonalization of a matrix of dimension (N
X N)?. In our approach this is reduced to the determination of
the zeros of a polynomial of degree N,. If we consider the
case of periodic boundary conditions, the 6 values are given
by 6,=2m{/N, with €=0,*1,=2,...,N/2 (assuming N
even), and the equation giving the energy spectrum is the
same which we would have obtained if we had done a Fou-
rier transform in the initial Hamiltonian.

It is important to stress that our approach can easily in-
clude the case where the quantum dot is represented by a
continuous model. In this case the Green’s function of the
dot has the form G(r,r’,E), where r and r’ are two-
dimensional vectors characterizing the position in the dot. In
order to apply the developed formalism we only need to
choose the values of r to which the dots connect among
themselves.

Finally we note that our description of the transport is
easily generalized to include finite values of the potential

PHYSICAL REVIEW B 79, 035107 (2009)

bias between the leads. In this case, an appropriate treatment
of the problem requires to solve for the Green’s function
together with an iterative solution of the Poisson’s equation.
For quasi-one-dimensional systems this does not require
powerful computational facilities. This will be addressed in a
forthcoming publication.
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APPENDIX A: AN ALTERNATIVE SOLUTION OF THE
FINITE CHAIN PROBLEM I

We develop here an approach to the solution of the finite
chain problem that builds the symmetries between the two
coordinates of the Green’s function from the start. This
method can also be used to tackle the more general problem
of the quantum dot array. In terms of the resolvents and of V,
Dyson’s equation can take two alternative forms,

G=G"+GVG, (Ala)

G=G"+GVGO. (A1D)
Forming matrix elements with the basis-state vectors and

using 1=3"_,[n)(n|, one obtains

(n|G|m) = G°8,,, - 1G'(n — 1|G|m) + (n + 1|G|m)),
(A2a)

(n|Glm) = G, — tG*((n|Glm — 1) + (n|Glm + 1)),
(A2b)

with G’=(z—¢,)~". By taking the sum and the difference of
these equations, one derives equivalent conditions which are
more symmetrical in the two coordinates of the Green’s
function,

1 A t A A
a1GIm) = 8= 2 ((n = 11GIm) + G+ 1/Glm)

+(n|Glm = 1) + (n|G|m + 1)), (A3a)

0={(n—1|Gm)+ (n+1|G|m) = (n|G|m + 1) = (n|G|m + 1).
(A3b)

Apart from the Kronecker delta term §,,,, Eq. (A3a) defines
the wave function of two particles with a tight-binding
Hamiltonian and an eigenvalue 1/G°. It is obvious that the
difference of two solutions of this set of equations will be a
solution of the corresponding homogeneous system (without
the 8, term). Our strategy for finding (n|G|m)=G,,, is the
following: (i) we construct the general solution of the homo-
geneous system assuming plane waves in the two “particle”
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coordinates; (ii) we find one solution of the full nonhomoge-
neous system by allowing different plane-wave solutions for
n=m and n>m, very much in the spirit of the Bethe solu-
tion for two particles with local interactions moving in one
dimension; and (iii) the general solution is just the particular
solution of (ii) added to a general linear combinations of the
solutions of (i). To determine the latter we require additional
boundary conditions, which, for a finite chain, are

Gop =0, (Ada)
Gneim=0, (Adb)
G=0, (Adc)
Gune1=0. (Add)

We begin by writing a general solution of the homogeneous
system in the form

l,bnm=Aei01n+i62m. (AS)

Inserting this trial solution in Eq. (A3b) we get the condition
cos 0;—cos 6,=0; we must have 6;= * 6,= 6. With this con-
dition, #,, is a solution of the homogeneous version of Eq.
(A3a) provided

=—2tcos 6. (A6)

el
So the solution of the homogeneous equations is a linear
superposition of waves,

wnm(a) — Agit?(n—m) + Beif)(n+m)’ (A7)

where 6 solves Eq. (A6).

We now address the determination of one solution of the
full nonhomogeneous equation [Eq. (A3)], which we write in
the form ¢,,=¢;, . for n=m, and ¢,,=y, , for n>m,
where ¢ and ¢, are two different solutions of the homo-

geneous system. There are only two conditions that mix ™
and ¢, namely,

1 t
El//:nz 1- E(l/ln>+ln + lv[/n<—ln+ l/ln<n+l + lv[/:n—l)’

1 > ! > < < >
Elr//nﬂn == 5(¢n+2n + lv[/nn + Irlfn+1n+l + ¢n+ln—1)'

Because ¢~ and ¢ are solutions of the homogeneous sys-
tem, we can easily transform these conditions into

t
1= E(lﬂ;m - ¢:+1n + 51—1 - ‘ﬁn<n—1 ) (A8a)

0= lpn<n - ‘rb;l + ¢f+1n+1 - l//:+1n+l . (A8b)

These conditions cannot be fulfilled by solutions which are
function of n+m so we must have

¢< =A<ei0(n—m) +B<e—i€(n—m)
nm ’
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l/,;m =A>ei6(n—m) + B>e—i6)(n—m)'

Inserting these trial functions in Eq. (A8) and solving the
corresponding linear equations for the constants, one gets

AS=-B~=-A"=B"=- 1
4it sin 6’
leading to a solution
= 5——sin(bln = )
= orsing

exactly as found in Sec. IT A [Eq. (14)]. We have now carried
out points (i) and (ii) outlined above and obtained the general
solution of Eq. (A3) as

sin(ln — m|)

G, = +
m = Yom 2t sin 6

where ¢, is superposition of waves of form (A7) with
satisfying Eq. (A6). To enforce the boundary conditions it
proves more convenient to write the solution in sines and
cosines as

G =A cos[0(n—m)]+ B sin[ 0(n —m)] + C cos[ O(n + m)]

sin(6|n — m|)

+ D sin| 8(n + +
[0+ m)] 2t sin 6

To derive the values of these constants, we insert this solu-
tion in Eq. (A4), use the linear independence of the sine and
cosine functions, and arrive at the final result,

1 cos[O(N+1)]
Gun(2) = 2 sin[ (N + 1)]sin 6

{cos[O(n —m)]

—cos[0(n+m)]} - %

~ sin[ O|n — m|]}

sin 6

{ sin[ O(n +m)]

sin 6
(A9)
which is the same solution as Eq. (17).

APPENDIX B: AN ALTERNATIVE SOLUTION OF THE
FINITE CHAIN PROBLEM II

In Appendix A, the Dyson equation was written in two
alternative forms [see Egs. (A1) and (A2)]. In Eq. (A2a), the
ket is unchanged and it can be thought of as a tight-binding
equation for the bra of (n|G|m) with an inhomogeneity at site
m. Since we are dealing with a real Hamiltonian, we can
make the following Ansatz for G, ,,=(n|G|m):

G - {G§m=al(m)cos On+ ay(m)sin On, n<m

G, =b (m)cos On +b,(m)sin On, n=m,
(B1)

where a;(m) and b;(m) (i=1,2) are the arbitrary functions of
m.
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In Eq. (A2b), the bra is unchanged and it can be thought of as a tight-binding equation for the ket of (n|G|m) with an
inhomogeneity at site n. We can thus make the following Ansatz:

nm
nm =

where ¢;(n) and d,(n) (i=1,2) are the arbitrary functions of n.

G G, =ci(n)cos Om + cy(n)sin 6m, m>n
G,?m=d1(n)cos Om + d,(n)sin m, m=n,

Combining Egs. (B1) and (B2), we arrive to the following Ansatz for the Green’s function:

< . . . .
G {Gnm=a1 cos On cos Om + a, cos On sin Om + az sin On cos Om + ay sin On sin Om, n<m
nm_

Gn>m=b1 cos 6n cos Om + b, cos On sin Om + b sin On cos Om + b, sin On sin Om, n=m.

Notice that now the coefficients are site independent.

From the boundary conditions G, =G, =0, we obtain
a;=a,=b;=b3;=0. From the boundary conditions G,\<,+,m
=G,y,;=0, we have az=—a,tan ON+1) and b,
=—b, tan O(N+1). The matching condition at n=m—1 yields
G, =G, (continuity of the Green’s function) and thus a,
=b,. The matching condition at n=m yields G,,_,, -G,
=t"! (discontinuity of the derivative of the Green’s function)
and thus a,=[sin 6tan AN+1)¢]'. The final result can
therefore be written as

G =

1 —tan (N + 1)sin 6n cos Om + sin On sin Om
nm t

tan O(N + 1)sin 6
1sin O(N + 1 — m)sin 6n
t sin 6N+ 1)sin 0

(B4)

G =G,

mn*

(B5)

Again @ is determined by the dispersion relation [Eq. (A6)].
This yields an alternative (but equivalent) representation of
the Green’s functions of a tight-binding chain with open
boundaries.

The extension to the more general case is analogous, but
one has to take special care by defining the matching condi-
tions because the unperturbed Green’s function is now a ma-
trix. It then follows that the Green’s function for the nondi-
agonal matrix elements which are not constrained by the
boundary conditions will be discontinuous for energies
which are not eigenenergies of the unperturbed system.

APPENDIX C: MATRIX M of EQ. (30) AND MATRIX V of
EQ. (33)

The matrix M of Eq. (30) is given by

Loy+tGyL,  tG)L, 0
M= 0 1G°L,  Ls+1G)Ly |, (C1)
1G°Ly  1G)(Ly—Ly) —1GYLs

with the functions L;, with i=0,...,5 given by

Ly = cos(m6) — cot(NO+ 0)sin(m6), (C2a)

L, =cos(mf+ ) — cot(NO+ O)sin(mb+ ), (C2b)

(B2)
(B3)
|
L, =[cot(mb) — cot(NO+ 6)]sin(mO- 6), (C2c)
Ly =sin(m6 - 6), (C24)
Ly=cos(mb+ 0) —cot(NO+ O)sin(mb+ 6), (C2e)
Ls =sin(m#6). (C21)
The matrix V of Eq. (33) is given by
cos(mb) sin(m6) 0
V=|cos(m@—-0) sin(mbé-6) 0 |, (C3)
cos(m@+ 0) a(0) b(6)
with the functions a(6) and b(6) given by
a(6) =cos(mO+ O)tan(mb), (C4a)
b(60) = sin(mO+ 0) — cos(mb+ O)tan(md). (C4b)

The vector q"=[q,,4¢,,q;] entering in Eq. (33) has its com-
ponents given by

g, = (tP,) '[1G P, - PGYGY GY) sin(mf— 6) X sin(N§+ 6

—mé) + 2G°GY) sin(NO—m6)P,,_], (C5a)

¢y = (tP;)"'[= P, + GG sin(NO + 6 — m6) X sin(m6
-0)], (C5b)

g3 = (tP)[= P, + 2G° GY) sin(NO— m6) X sin(m6)].
(C5¢)
APPENDIX D: FULL ANALYTICAL EXPRESSIONS FOR
THE GREEN’S FUNCTIONS

After using the boundary conditions and three of the four
time-reversal conditions, the Anscitze for the Green’s func-
tions for n<<m are

" = Aji[cos(nf) — cot(mb)sin(n6)]

+Aj/[cot(mb) — cot(NO+ 6)sin(n6), (Dla)

"= A [cot(mB) — cot(NO+ 6)Jsin(n6), (D1b)
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"= Aj; cos(nf) + B, sin(n#), (Dlc)
G = B’ sin(n6) (D1d)
and for n>m are
" = Aj/[cos(n6) — cot(NO+ 6)sin(n6)],
""=A;, cos(nf) + B;; sin(n6), (D2a)
G/ = A, [cos(n) — cot(LO+ O)sin(nh)],  (D2b)

G = A~ [cos(n6) — cot(m@)sin(n6)] + B}, sin(n6).
(D2c¢)
Following the method described in the bulk of the paper, the
full analytical expressions for the Green’s functions are
given by
0

G
- —=sin(i®)P,_;, <]
Gi=\ o (D3)
_ e -gﬁ_.’ i>7,
PLsm(l )P, J
G -
- P—”sin[(N+ 1-)61P,, i<j
Gi=y o (D4)
~Asin[(N+1-0)6]P,_,, i>],
P
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0 ~0

tG, G
;—rusin(iﬁ)sin[(N+ 1-/)6], i<j
Gi={ * | (D5)

_ﬁ _iﬁ‘_ . = 0

\ P, L-ifj-1 L=]

and

.
1~ - ..
I?PL—jPi—h <]

Gl =1 - D6
GGy . . (Do)
P—51n(]6)s1n[(N+ 1-0)6], i>].

L FL

Note that Gj/=G/) and that the diagonal Green’s functions
obey

0

1 . G
G>,z+ll _ G<,1+ll — _ll, D7
1 1 tG([)r ( )
. G
Gr<r,l—ll _ Gr>r,l—lt — _r(;’ (DS)
tGrl

which are similar to Egs. (13b) and (32a), which are the
generalizations to the lattice of the discontinuity of the first
derivative of a Green’s function.

Similar results to those given in this appendix have been
also obtained in Ref. 58 in the context of organic molecular
systems, but no hints about the method used to derive them
were given.

K. Nishi, in Semiconductor Quantum Dots: Physics, Spectros-
copy and Applications, edited by Y. Masumoto and T. Takaga-
hara (Springer, New York, 2002), Chap. 12, p. 457.

2 Quantum Dots: Applications in Biology, edited by C. Z. Hotz
and M. Bruchez (Humana, Totowa, 2007).

3Michael C. Petty, Molecular Electronics: From Principles to
Practice (Wiley Blackwell, Ames, 2007).

4T. Kwapinski, J. Phys.: Condens. Matter 18, 7313 (2006); 19,
176218 (2007).

SW. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham,
and Hongkun Park, Nature (London) 411, 665 (2001); J. Kong,
E. Yenilmez, T. W. Tombler, W. Kim, H. Dai, R. B. Laughlin, L.
Liu, C. S. Jayanthi, and S. Y. Wu Phys. Rev. Lett. 87, 106801
(2001).

SA. Onipko, Y. Klymenko, and L. Malysheva, J. Chem. Phys.
107, 5032 (1997).

TA. Onipko, Y. Klymenko, and L. Malysheva, Phys. Rev. B 62,
10480 (2000).

8M. 1. Molina, Phys. Rev. B 67, 054202 (2003); 73, 014204
(2006).

M. I. Molina, Phys. Rev. B 74, 045412 (2006).

D A. Ryndyk, R. Gutierrez, B. Song, and G. Cuniberti,
arXiv:0805.0628 (unpublished).

17Zhao Yang Zeng, Yi-You Nie, F. Claro, and W. Yan, Phys. Lett.
A 331, 84 (2004).

I2H. Li, T. Lu, and P. Sun, Phys. Status Solidi B 242, 1679 (2005).

BL. Arrachea, Phys. Rev. B 72, 125349 (2005).

“A. Oguri, Phys. Rev. B 63, 115305 (2001).

15C. Karrasch, T. Enss, and V. Meden, Phys. Rev. B 73, 235337
(2006).

16Hiroyuki Ishii and Takashi Nakayama, Phys. Rev. B 73, 235311
(2006).

7E, Reininghaus, T. Korb, and H. Schoeller, Phys. Rev. Lett. 97,
026803 (2006).

I8C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J.
Phys. C 4, 916 (1971); 4, 2598 (1971); 5, 21 (1972).

19R. Combescot, J. Phys. C 4, 2611 (1971).

20R. Combescot and G. Schreder, J. Phys. C 6, 1363 (1973); 7,
1318 (1974).

2IF. Guinea and J. A. Vergés, Phys. Rev. B 35, 979 (1987).

22P. Sautet and C. Joachim, Phys. Rev. B 38, 12238 (1988).

23H. Mizes and E. Conwell, Phys. Rev. B 44, 3963 (1991).

2N. M. R. Peres and F. Sols, J. Phys.: Condens. Matter 20,
255207 (2008).

2 A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J.
Beenakker, Phys. Rev. B 77, 205416 (2008).

20N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B
73, 125411 (2006).

27TN. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B
73, 195411 (2006).

035107-12



LATTICE GREEN’s FUNCTION APPROACH TO THE...

28 A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. World
19, 33 (2006).

29K. Wakabayashi, J. Phys. Soc. Jpn. 71, 2500 (2002).

30B. H. Teng, H. K. Sy, Z. C. Wang, Y. Q. Sun, and H. C. Yang,
Phys. Rev. B 75, 012105 (2007).

3David K. Ferry and Stephen M. Goodnick, Transport in Nano-
structures (Cambridge University Press, Cambridge, 2001).

328. Datta, Electronic Transport in Mesoscopic Systems (Cam-
bridge University Press, Cambridge, 2005).

3Eleftherios N. Economou, Green’s Functions in Quantum Phys-
ics, 3rd ed. (Springer-Verlag, Berlin, 2006).

34G. Barton, Elements of Green’s Functions and Propagation: Po-
tentials, Diffusion and Waves (Oxford University Press, Oxford,
1989).

358, Katsura, T. Morita, S. Inawashiro, T. Horiguchi, and Y. Abe, J.
Math. Phys. 12, 892 (1971).

36K. Lakatos-Lindenberg, R. P. Hemenger, and R. M. Pearlstein, J.
Chem. Phys. 56, 4852 (1972).

37 Peter Karadov and Obis Castafio, J. Mol. Struct. 90, 115 (1982);
J. Chem. Soc., Faraday Trans. 2 78, 73 (1982).
3 Robert Vein and Paul Dale, Determinants and Their Applications
in Mathematical Physics (Springer-Verlag, New York, 1998).
¥K. S. Dy, Shi-Yu Wu, and T. Spratlin, Phys. Rev. B 20, 4237
(1979).

490A. A. Bahurmuz and P. D. Loly, J. Math. Phys. 22, 564 (1981).

4w, A. Schwalm and M. K. Schwalm, Phys. Rev. B 37, 9524
(1988).

4 Milton Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

PHYSICAL REVIEW B 79, 035107 (2009)

43R. Bass, J. Math. Phys. 26, 3068 (1985).

4“D. M. Newns, Phys. Rev. 178, 1123 (1969).

4 Sydney G. Davison and Kenneth W. Sulston, Green Function
Theory of Chemisorption (Springer, Dordrecht, 2006), Chap. 4.

46y, Mujica, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101,
6849 (1994); 101, 6856 (1994).

47V. Mujica, M. Kemp, A. Roitberg, and M. Ratner, J. Chem.
Phys. 104, 7296 (1996).

By, Muyjica, in Condensed Matter Theories, edited by E. Ludena,
P. Vashishta, and R. Bishop (Nova Sciences, Hauppauge, New
York, 1996), Vol. 11, pp. 261-272.

“D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

50Rolando Pérez-Alvarez and Federico Garcia-Moliner, Transfer
Matrix, Green Function and Related Techniques (Publicaciones
de la Universitat Jaume 1, Castell6 de la Plana, 2004).

SIT. Ando, Phys. Rev. B 44, 8017 (1991).

52P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, and P.
J. Kelly, Phys. Rev. B 72, 035450 (2005).

33 K. Nikoli¢ and A. MacKinnon, Phys. Rev. B 50, 11008 (1994).

34 A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528
(1994).

55J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

%67. G. Yu, D. L. Smith, A. Saxena, and A. R. Bishop, Phys. Rev.
B 59, 16001 (1999).

57Per-Olov Lowdin, J. Math. Phys. 3, 969 (1962).

38 Alexander Onipko and Lyuba Malysheva, in Nano and Molecu-
lar Electronics Handbook, edited by S. E. Lyshevski (CRC,
London, 2007), Chap. 23.

035107-13



